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Abstract. Large formalizations carry the risk of inconsistency, and hence
may lead to instances of spurious reasoning. This paper describes a new
approach and tool that automatically probes large first-order axiomati-
zations for inconsistency, by selecting subsets of the axioms centered on
certain function and predicate symbols, and handling the subsets to a
first-order theorem prover to test for unsatisfiability. The tool has been
applied to several large axiomatizations, inconsistencies have been found,
inconsistent cores extracted, and semi-automatic analysis of the incon-
sistent cores has helped to pinpoint the axioms that appear to be the
underlying cause of inconsistency.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of computer programs that automate sound reasoning: the derivation of conclu-
sions that follow inevitably from facts. The dual discipline, automated model
finding, develops computer programs that establish that a set of statements is
consistent. These capabilities lie at the heart of many important computational
tasks, e.g., formal methods for software and hardware design and verification,
[37, 11], reasoning in meta-physics [46, 4], solving hard problems in mathematics,
[24, 19], and inference for the semantic web [13]. The use of automated reasoning
systems (theorem proving and model finding) requires a user to (rather precisely)
describe the domain of application as a set of axioms. For theorem proving, an
ATP system is then used to prove that a conjecture is a theorem of the axioms,
and hopefully produce a proof. For model finding, a model finding system is used
to demonstrate the consistency of the axioms, and hopefully produce a model
of the axioms. Automated theorem proving in classical logic relies on the axioms
being consistent, for otherwise all conjectures are theorems of the axiomatiza-
tion. The direct method of showing that a set of axioms is consistent is to use a
model finder on the axioms. However, for large axiom sets this approach becomes
rather difficult (or impossible), because most large axiomatizations have large
or infinite models.
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In the last 10 to 15 years there has been an increased, and increasingly suc-
cessful, use of automated reasoning in “large theories”, i.e., domain descriptions
that have many symbols, and many axioms of which typically only a few are
required for the proof of a theorem. Examples include commonsense and onto-
logical knowledge bases such as Cyc [23, 33] and the SUMO (Suggested Upper
Merged Ontology) family of ontologies [26, 31, 29], large mathematical formal-
izations such as Mizar [42, 44], Flyspeck [17] and Isabelle’s Archive of Formal
Proofs [20], and encodings of biological domains [10]. Such large axiomatiza-
tions always carry the risk of inconsistency - either because of mistakes in the
original formulation, or because of errors encoding the original formulation into
logic. Advances in ATP systems have revealed these inconsistencies while finding
proofs of theorems [38], thus stimulating efforts to check such axiomatizations
for consistency (for which model finding is largely unsuccessful, as noted above),
and to pinpoint and fix inconsistencies.

This paper proposes a new approach and tool for automatically probing
large first-order axiomatizations for inconsistencies. If inconsistencies are found,
a small inconsistent core can typically be presented, which makes it easy to
identify errors and to repair the axiomatization. This paper describes the idea
and implementation of the method, and demonstrates how effective it can be on
some existing large first-order axiomatizations.

2 Automated Reasoning in Large Theories

A common, almost necessary, part of reasoning over large axiomatizations is fo-
cussing on axioms that are likely to be relevant to proving a given conjecture.
Typically, only a few axioms are needed for a proof. The irrelevant axioms in-
crease the search space, often to the extent that it is impossible to find a proof.
Axiom selection techniques address this problem [41, 22]. A number of strong
axiom selection methods for assisting formal mathematics [7] are based on var-
ious ways of learning from a large body of previous proofs [45, 1, 16, 2]. In this
work we are however to a large extent interested in common-sense knowledge
bases, which mainly consist just of definitions and axioms. Below we therefore
focus on heuristic rather than learning selection methods.

Relevance pruning tries to identify all formulae that are potentially relevant
to proving a conjecture (or set of conjectures). Two formulae are relevant with
respect to each other if they share a function or predicate symbol. Relevance
pruning selects all formulae in the reflexive transitive closure of the conjecture
with respect to the relevancy relation. Unrestricted relevance pruning maintains
completeness in the non-equational case. A weakness is that the closure is often
still very large.

A symbolic heuristic approach is the MePo families of filters [25] developed in
the context of Sledgehammer [27], Isabelle’s interface to ATP systems. The MePo
filters represent formulae (and formula sets) as vectors of symbol occurrences,
and iteratively select formulae with vectors similar to the vector of the already
selected set. The process is again seeded with the conjecture.



Maybe the currently most widely used family of algorithms is derived from
Hoder’s SInE (SUMO Inference Engine) [15]). SInE can be seen as a heuristic
variant of relevancy pruning. It is based on the idea of a “defines” relation
between symbols and formulae. As for the previous approaches, SInE starts with
a conjecture (and its symbols) and tries to add formulae until a fixpoint is reached
in which all symbols in the set of selected formulae are defined. SInE assumes that
rare symbols are typically defined in terms of more common symbols. Thus the
“defines” relation associates a symbol with the formulae in which the symbol is
the rarest symbol. Various implementations allow for slightly weaker constraints
on this condition, or support early termination after a given number of formulae
has been added or a maximum level of definitions has been followed. Variants of
SInE have been implemented in, e.g., Vampire [21] and E [35, 36], and are also
the basis for this work.

3 Automatic Inconsistency Probing

In previous work, we have employed a method where we simply iterate through
the set of axioms in the SUMO theory, testing them one at a time for inconsis-
tency with the growing knowledge base [30]. The method starts from an empty
knowledge base, and iteratively adds each axiom not proven to lead to a con-
tradiction. However, this process can fail to find existing inconsistencies as soon
as the knowledge base becomes complex enough that not every prover run ter-
minates with a satisfiable/unsatisfiable result. Ideally, we would have a method
fast enough to be run every time a new axiom is added to the theory.

The core idea of our new approach is to automatically extract subsets of an
axiomatization, and test each for unsatisfiability. If any subset is unsatisfiable,
so is the full axiomatization. The inconsistent core of such a subset can be
extracted from the proof of unsatisfiability, and analyzed to pinpoint the cause
of the inconsistency.

To extract a potentially unsatisfiable subset of axioms, a symbol is selected
as the seed symbol. The seed symbol is used to select a set of seed formulae
(possibly a single formula). The seed formulae are used as pseudo-goals for a
SInE filter that recursively extracts definitions related to the seed formulae until
the definitional closure is reached or one of the hard bounds (number of formulae
or depth of definition chain) is reached. The resulting set of axioms is handed
to a refutation-based ATP system that tries to show the set to be unsatisfiable.
The overall architecture and data flow of the system is depicted in Fig. 1.

This general approach has a number of choice points: How to select the seed
symbol, how to use the seed symbol to select seed formulae, which SInE filters
to use, and how to parameterize the ATP system with respect to search strategy
and resource limits.

The easiest way to select seed symbols is to try all the symbols in the axiom-
atization. For large axiomatizations with a big signature this leads to very many
subsets to be tested for unsatisfiability, and hence is computationally challeng-
ing, although in many cases not prohibitively so. To limit the number of subsets,



Axiom Filter System

ATP 
(Sat)

Proof/ 
Core

ATP 
(Unsat)

ATP 
(TimeOut)

ATP 
(Unsat)

ATP 
(…)

ATP 
(Unsat)

Large axiomatization

Proof/ 
Core

Proof/ 
Core

Comparison/Analysis

ATP 
(…)

SInE filter
SInE 

Config 1
SInE 

Config n
SInE 
…

SiNE 
…

SInE 
…

SInE 
Config n

SInE 
Config 1

Seed axiom selection

Seed symbol selection
Seed symbol 
selector 1

Seed symbol 
selector n

Formulae 
selector 1

Formulae 
selector n

Formulae 
selector n

Formulae 
selector 1

…

… …

…… … …

Fig. 1. Data flow and architecture

restrictions can be imposed on the type and number of seed symbols. First, the
class of symbols considered as seeds can be restricted to predicate symbols only,
proper function symbols (excluding constants) only, or constants only, or any
combination of the three. At least in commonsense scenarios, a very large pro-
portion of symbols are constants, and our experiments have shown that excluding
constants does not seem to reduce the number of inconsistencies found.

Secondly, a subset of the eligible seed symbols can be selected, according to
a desired number of seed symbols and a selection criterion. We implemented
a variety of relatively simple methods to get an impression of the spectrum of
behaviours. Here, the first approach is to pick rare symbols, i.e. symbols that
do not occur in many axioms, as seed. This is based on the assumption that
more specialized parts of the ontology will typically be less exercised than more
general parts, and are hence more likely to contain hidden bugs. The opposite
approach, picking the most frequent symbols as seeds, is based on the idea that
they tend to bring together different, possibly conflicting parts of the ontology.
The last method, picking random symbols, acts as a control.



Given a set of seed symbols, three different methods have been tested for
selecting seed formulae:

– Use of the most diverse axiom selects a single seed formula with the largest
number of different function and predicate symbols among all that contain
the given seed symbol. Ties are broken by selecting the first candidate for-
mula with maximal diversity.

– Use of the largest axiom picks the syntactically largest formula that contains
the seed symbol, i.e. the formula with the most nodes in its tree representa-
tion. Ties are again broken in favor of the first formulae found.

– Use of all axioms that contain the seed symbol.

After selection of the seed formulae, a number of different SInE variants are
used as filters. Each of the SInE filters produces one subset to be tested for
unsatisfiability for each input set. The resulting files are handed to the theorem
prover (usually in some batch processing configuration), which tries to prove
them with a short time limit (3 seconds to 30 seconds).

3.1 Implementation

The extraction of subsets to test for unsatisfiability has been implemented in
e axfilter, a component of the E system distribution. It implements a version
of SInE that efficiently applies multiple filters to its input, amortizing the cost
of parsing, preprocessing and indexing. Code to select seed symbols and seed
formulae was added, as described in the previous section.

In the experiments, SInE filters that have previously proven their worth with
respect to conventional theorem proving were used. Of these, 9 different SInE
configurations are applicable to this setting (which does not distinguish between
the proper conjecture and additional local hypotheses, as there is no proper
conjecture).

E 2.0pre12 was used as the default ATP system to check the extracted formula
sets for unsatisfiability. The prover was configured to run in automatic mode, but
without engaging its built-in SInE selection. Postprocessing and analysis of the
unsatisfiable cores was done with with simple shell scripts and some manual
processing.

A cleaned up distribution of the current state of the system is available at
http://eprover.eu/E-eu/AxProbing.html.

4 Experimental Results

4.1 SUMO Results

We have first applied our system to the TPTP v6.4.0 [39] axiom file CSR003+2.ax,
which contains a first-order translation [28] of the 2010 release of SUMO, MILO
(the MId-Level Ontology) and 30 domain ontologies. The file contains 55588
formulae, which use 1291 predicates, 291 non-constant function symbols, and



32838 constants. It was originally believed to be consistent, but results from
the CASC-J6 ATP system competition revealed that the axioms were inconsis-
tent [38], and further inconsistencies have been found since then. In each case
corrections were made to make the theory consistent again, at least as far as was
known at the time. The experiments for this paper revealed more inconsistencies.
We explored the axiomatization, confirmed the inconsistency, and identified at
least one common root cause.

The seed symbols were selected in each of the three ways . . . randomly, the
most frequently occurring, and the least frequently occurring. For each way, 600
symbols were selected . . . 200 predicate symbols, 200 (non-constant) function
symbols, and 200 constants. We ran E with a time limit of 3 seconds on current-
generation hardware (2.6GHz Intel Core processors, no memory limit, automatic
mode) to determine the status of each probe.

Table 1 summarizes the properties of the generated files. At this stage, a
number of interesting and maybe unintuitive observations can be made. First,
we were surprised by the fact that less frequent symbols seem to generate larger
probes - the naive assumption being that the larger set of seed axioms in the
“use all applicable formulas” setting would bias the size up. However, the effect
can be explained by looking at SInE’s “defined” relation, which assumes that
rare symbols are defined in terms of more common ones. Very specialized (rare)
symbols have more levels of definitions to traverse until the fix-point is reached.
The second observation is that success of the ATP - both for satisfiable and
unsatisfiable probes - strongly correlates with the average size of the problem,
with most successes for the smaller probes based on more common symbols.

Table 1. Properties of generated SUMO subsets

Seed symbols # formulae ATP status
selection method Min Med Avg Max SAT UNS TMO

Random 1 6855 1001 20001 1577 19 14604
Least frequent symbols 8 7963 3430 20001 965 11 15224
Most frequent symbols 1 5303 501 20001 4024 623 11553

Columns show the minimum number of axioms for probes in the corresponding cate-
gory, the median size, the average size, the maximum size, and the number of probes
shown satisfiable, unsatisfiable, or running into the time limit.

Table 2 provides an overview of the results. For each seed symbol selec-
tion method it provides the number of subsets that were found to be unsatis-
fiable, the number of distinct unsatisfiable cores, the number of distinct Predi-
cate/Function/Constant seeds that led to an unsatisfiable subset, and the num-
ber of distinct seed symbols leading to the Diverse/Largest/All seed formula
selection method producing an unsatisfiable probe.

The results indicate that (for at least this axiomatization) using the most
frequently occurring predicate symbols as seed symbols is the most effective.



Table 2. SUMO experimental results

Seed symbol # of UNS # distinct # by seed type # by axiom select.
selection method subsets UNS cores P F C D L A

Random 19 15 6 3 0 1 1 9
Least frequent symbols 11 9 2 4 0 1 1 6
Most frequent symbols 623 43 78 3 0 79 79 81

All together 653 67 86 9 0 81 81 95

We can also observe that the “Use all formulas with the seed symbol” method
subsumes the other approaches - every symbol that was successful with one of
the other seed axiom selection method also produced at least one unsatisfiable
probe with that method.

Automated analysis of the unsatisfiable cores reveals that the following axiom
is present in all of them:

fof(kb_SUMO_32603,axiom,(

! [V__C2,V__U,V__C1] :

( V__U = s__UnionFn(V__C1,V__C2)

<=> ! [V__I1,V__I2,V__I3] :

( ( s__instance(V__C1,s__SetOrClass)

& s__instance(V__U,s__SetOrClass)

& s__instance(V__C2,s__SetOrClass) )

=> ( ( s__instance(V__I1,V__C1)

& s__instance(V__I2,V__C2)

& s__instance(V__I3,V__U) )

=> ( s__instance(V__I1,V__U)

& s__instance(V__I2,V__U)

& ( s__instance(V__I3,V__C1)

| s__instance(V__I3,V__C2) ) ) ) ) ) )).

The axiom (incorrectly) defines the union function s UnionFn, but mistak-
enly uses the s instance predicate instead of the s member predicate in the
consequent of the outer implication on the right-hand side of the equivalence. If
we remove the offending axiom, no more inconsistencies are found and SUMO
is consistent to the best of our knowledge.

With this method for debugging SUMO we now have, for large logical the-
ories, something approaching common practice in software engineering on non-
trivial systems, of adding to a software system and then going through one or
more cycles of validation and correction. Hopefully, further research will con-
tinue to yield methods that improve the completeness of the debugging process,
and improve its speed, so that it becomes possible to check every new axiom at
the time it is authored for whether it introduces an inconsistency.

We can also analyze which of the 9 different SInE configurations have con-
tributed most to finding inconsistent probes. Table 3 summarizes the result. We
can see that only 4 of the 9 filter configurations generate at least one probe that



is unsatisfiable. We can again confirm that the overall ATP success rate seems
to strongly correspond to the median (and average) problem size, i.e. the larger
the problems are, the more likely the ATP is to time out. On the other hand,
for finding inconsistencies, we are only interested in UNS (unsatisfiable) results.
There, over-pruning (as likely the case for gf120 h gu RUU F100 L00100, which
has a very small hard size limit and selects at most 100 formulae to complement
the seed formulae) is also a risk.

Table 3. Probe status by SInE configuration

SInE configuration Min Med Avg Max SAT UNS TMO

gf120 h gu R02 F100 L20000 1 385 314 928 1109 241 4050
gf120 h gu RUU F100 L00100 1 79 101 101 1258 0 4142
gf120 h gu RUU F100 L00500 1 322 501 501 814 241 4345
gf120 h gu RUU F100 L01000 1 601 978 1001 790 158 4452
gf150 h gu RUU F100 L20000 8 6283 10075 10625 603 0 4797
gf200 h gu R03 F100 L20000 5 1590 1805 4003 833 13 4554
gf200 h gu RUU F100 L20000 8 13211 17703 17966 516 0 4884
gf500 h gu R04 F100 L20000 15 11789 18156 20001 439 0 4961
gf600 h gu R05 F100 L20000 28 13472 20001 20001 204 0 5196

4.2 OpenCyc Results

Experiments similar to those performed on the SUMO axiom set were performed
on an export of a fragment of the OpenCyc knowledge base [33], in the TPTP
v6.4.0 axiom file CSR002+4.ax. Two inconsistencies were found.

The first unsatisfiable subset was generated by selecting the 200 least fre-
quently occurring predicate symbols as seed symbols, and selecting all axioms
with those seed symbols as seed formulae. The offending unsatisfiable core of
seven axioms contains the following two axioms, which confuse temporal objects
with geographical subregions - clearly a mistake in the underlying Cyc axioma-
tization.

fof(ax4_357170,axiom,(

! [X] :

( temporalstufftype(X)

=> geographicalsubregiontypes(X,X) ) )).

fof(ax4_231810,axiom,(

! [ARG1,ARG2] :

( geographicalsubregiontypes(ARG1,ARG2)

=> temporalstufftype(ARG1) ) )).



The second unsatisfiable subset was generated by selecting 400 random pred-
icate symbols as seed symbols, and selecting all axioms with those seed symbols
as seed formulae. The offending unsatisfiable core of 20 axioms contains two
axioms that mix temporal objects with physical parts, but in this case it is not
obvious that they are the direct cause of the inconsistency.

4.3 Mizar Results

For the Mizar experiments the MPTP translation [42] of the Mizar Mathematical
Library (MML) [12] to TPTP was used. More precisely, version 4.181.11475 of
the MML, which has been used for the so far most extensive ATP and premise-
selection experiments over Mizar [18], was used. These previous experiments
took several weeks of real-time computation on a 64-core AMD server. Several
hundred combinations of premise selection methods and theorem provers were
tried. Neither a contradiction, nor a proof that would be illegal with respect to
the Mizar system was found. This makes it very unlikely to find a contradiction
in our current experiments.

The axiomatization file statements6 that was used for generating sub-theories
contains 146700 top-level Mizar lemmas, definitions, scheme instances, type-
system formulae, and other formulae encoding the Mizar built-in knowledge.
The formulae come from 1153 Mizar articles7, containing 17355 function and
constant symbols (including 3428 numbers), and 3689 predicate symbols8.

Mizar unsampled Initially, all problems were generated using both predicate
and function symbols and without subsampling. This takes about 15 hours using
a single CPU and produces 286614 files taking up about 700GB. Then we run E in
auto mode for 10 seconds on each problem. This takes 18 hours of real time using
50 CPUs in parallel. As expected, no problems are found to be Unsatisfiable.

Mizar sampled In the next version subsampling with m200 (picking the 200
most frequently occurring symbols as seeds) was used, limiting the seed symbols
only to predicates (based on the SUMO experiments) and seed method dl (using
the most diverse formula as a seed formula, and using the syntactically largest
formula as a seed formula). This generates in 23 minutes 3600 problems taking
up 11GB. Since this is much fewer problems, we can run E with higher time limit
(30 seconds). This takes 45 minutes of real time when using 50 CPUs in parallel.
Even with this higher time limit, no problems are found to be Unsatisfiable.

Mizar sampled with some omitted type guards In the last Mizar exper-
iment, a frequent error in formal mathematical developments was emulated by

5 http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/
6 http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/statements
7 http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/
8 http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/symbols



omitting an “obvious” assumption from a lemma. In particular, non-emptiness
(and thus also non-zero) assumption was omitted from the toplevel Mizar state-
ments. There are over 6000 affected statements.

Model finders such as Nitpick [8] and Nunchaku [34] can be tried in proof
assistants to quickly find such errors. Such methods have however limited use
when working over foundations such as set theory, where the underlying models
(if any) are infinitary. Finding a contradiction caused by the too strongly stated
lemma – using the methods developed here – is an interesting alternative.

Another scenario which actually occurred in various moments of the history
of building translations between ITPs and ATPs is that such typing assumptions
are sometimes omitted due to various corner cases in the ITP-ATP translation
modules. The methods developed here can be used as a global debugging tool
when creating such translations. Since it was known beforehand how to correct
all the corrupted statements, it was also possible to fully automate and observe
the process of gradually finding them with our tools, interleaved with (auto-
mated) correction and re-formulation. This provides an empirical evaluation of
the strength of the tools.

To generate the problems, the corrupted statements file was used, and again
subsampling was used to generate 3600 problems. As before, E was run with a
30s time limit and 50-fold parallelization. E found 2312 of the 3600 problems to
be unsatisfiable. E quickly finds very simple refutations (226 that use just three
formulae), but also more complicated ones: 347 of the refutations use 10 or more
formulae. All these 2312 refutations are due to only 8 corrupted formulae. The
one that occurs most frequently (in 1227 of the refutations) is the corrupted
Mizar typing statement cc1 ami 3:9

fof(cc1_ami_3,axiom,(

! [X1] :

( v7_ordinal1(X1)

=> ( ~ v1_xboole_0(X1)

& v7_ordinal1(X1)

& ~ v1_setfam_1(X1) ) ) )).

This claims that every natural number is non-empty and has an empty element.
This is of course false for zero, which is modelled as the empty set in set theory.

After repairing the eight corrupted formulae that were found automatically
in the 3600 generated problems, E was run again. This time 853 problems are
found to be unsatisfiable, and 18 new corrupted formulae involved in the refu-
tations were found. It is clear that the loop finds the most obvious offending
formulae early, and proceeds to find more and more complicated proofs of the
contradiction. After obtaining a fixpoint, the system becomes “effectively consis-
tent” wrt. to our tool , however it is still possible to see if there are problematic
formulae left.

9 http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/ami_3.html#

CC1



Table 4. 15 iterations of the contradiction-finding and axiom-correcting loop run on
the 3600 problems constructed from the Mizar data with some type guards omitted.

loop iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bad formulae found 8 18 10 8 6 1 1 0 0 0 1 0 0 0 0
unsat. problems found 2312 853 637 238 102 2 2 0 0 0 1 0 0 0 0

average proof time 10.2 8.5 13.7 21.2 22.7 21.3 27.7 29.5

This automated contradiction-finding and axiom-correcting loop is imple-
mented in about 30 lines of Perl.10 Note however that this can be easily auto-
mated only because the correct versions of all the intentionally modified facts
are known beforehand. In general, the axiom-correcting step is nontrivial. The
loop was run over the 3600 problems for 15 iterations, using a 30s time limit for
a problem and 50-fold parallelization. The 15 iterations thus took about 8 hours
of real time and 400 hours of CPU time.

It takes 7 iterations to reach a state in which no more contradictions are
found within the time limit. Many problematic formulae are however still left:
3590 of the 3600 problems still contain at least one of them after the 7th iteration.
Letting the loop run further shows that adding more time will very likely discover
further contradictions: in the 11th iteration, one more contradiction is found
taking 29.5s of CPU time. In total, the loop discovered 53 problematic formulae.
The iterations are shown in Table 4.

A brief experiment was done with a different ATP system, thus offering a
different notion of “effective consistency”. Instead of E, Vampire 4.1 was used,
again with a 30s time limit on all the problems from the 15th iteration (none
refutable by E). Vampire finds a contradiction in 297 of the problems, detecting
15 more problematic formulae. A fixpoint for Vampire is reached after 5 iterations
and discovering in total 29 more problematic formulae.

The remaining number of problematic formulae in the 3600 repaired problems
is however still high. 3590 of the repaired problems contain at least one of the
formulae, 3188 different problematic formulae occur there, and the total number
of occurrences of the formulae in all the problems is 1228432 (2.85% of all the
43049126 formulae there). For comparison, before starting the repairing loop, this
number was 1378711 (3.2%), i.e., 11% of such occurrences were automatically
removed.

5 Future Work

This paper has laid the groundwork to automatically search for inconsistencies
in large knowledge bases. There is a number of possible extensions.

First, there are many ways to experiment with the filtering. We have so far
only used E’s existing SInE implementation and its existing filter configurations.

10 https://github.com/JUrban/MPTP2/blob/master/Ebot/loop.pl



One approach would be to try new filter configurations close to the parameter
space demarcated by the so far most successful filters, using parameter-searching
systems such as BliStr [43] on a large set of problems. This applies not just to the
SInE filters, but to the whole interplay between seed symbol selection, seed axiom
selection and SInE filtering. Again, we could try to narrow down the probes to a
subset with a higher per-probe success rates, thus identifying a similar number
of inconsistencies with less computational effort. In this context, we can also
explore additional seed selection preferences (i.e. only use symbols with certain
arities, or symbols with certain minimum frequency) and seed axiom selection
methods (use the smallest axiom, use the least diverse axiom, etc.).

Second, we could add more axiom selection methods. For example, a very
different semantic heuristic selection method is available in SRASS [40] and
MaLARea [45]. It interleaves model finding for the axioms selected so far with
adding a (most relevant) axiom that is false in the model found so far. When the
loop stops (typically because no more models can be found), the axiom selection
is given to an ATP. In situations when a large number of proofs is available
(or generated e.g. by theory exploration), the current methods that produce the
seeding formula could also be followed by axiom selection based on some of the
many machine-learning methods developed recently.

Third, it would be instructive to apply our approach to additional large ax-
iomatizations, both in mathematical domains (e.g. a first-order translation of
the HOL Light Flyspeck corpus [14]), but also in more application-oriented do-
mains, where an interesting example would be SnowMed CT [3]. There may be
unsound-but-efficient encodings (historically used e.g. for Isabelle’s first-order
translation), that might keep most of their efficiency after automatically remov-
ing the worst sources of unsoundness using a similar process as described for
Mizar in Section 4.3. This process – namely removal of type guards – will also
apply to SUMO, since it uses a method for automatically adding explicit types
to axioms that lack such expressions in their originally authored forms.

Finally, we could experiment with different sound encodings. In some early
work, different methods for canonicalization of the knowledge base have lead to
the surfacing of different possible inconsistencies. We expect to integrate these
approaches and see if they yield more and different results. Our approach could
be also extended to work directly with more expressive logics, e.g. the higher
order logics used in systems like Isabelle, or the original higher order formulation
of SUMO in SUO-KIF or its translation to THF [6], either by translation of
higher-order theories to first order, or by direct use of higher-order provers like
Leo-II [5] or Sattalax [9].

6 Conclusion

For any large theory under active development there is a process that combines
the addition of new axioms to extend the coverage of the theory, with the use
of tools that aim to ensure desired properties of the axiomatization. The tool
presented here is one more in that armory, helping to ensure that the axiom-



atization is consistent. Both the SUMO and OpenCyc knowledge bases have,
on-and-off, been considered to be consistent, particularly those parts that lie
at their core. The discovery of inconsistencies might thus come as a surprise
to users, particularly when the axiomatizations have been used productively in
applications without revealing the contradictions. While the use of tools such as
the one described in this paper can be very helpful in finding inconsistencies, it
is important to note that such tools (including this one) are incomplete – they
do not ensure that the axiomatization is consistent.

Therefore it remains important to guard against conclusions that have been
derived because of inconsistency. Simply checking that the conjecture is part of
its proof can guard against this. One can also employ more refined approaches
based on paraconsistent logics [32].

As might be obvious from the differences in the experiments described in Sec-
tions 4.1 to 4.3, the tool has been used independently, and successfully, in three
quite distinct efforts. This shows the flexibility of the tool, and that different
combinations of choices can be effective in different circumstances.
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