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Abstract. Did PyRes [15] achieve its goal of being a sufficient model for
learning about how to implement a first-order ATP system? JavaRes is a
demonstration prover patterned after PyRes. In this paper we discuss the
architecture and data structures of this prover and the experience of one
of us implementing the prover, without prior expertise in writing an au-
tomated theorem prover prover. We present performance measurements
relative to PyRes and other systems. To illustrate the value of JavaRes
for learning about theorem proving we also mention the implementation
of several features beyond the original PyRes concept.

1 Introduction

Automated theorem proving is a fascinating and useful discipline, but can be
mystifying for someone not deeply acquainted with the field. It is fair to say that
most computer science professionals do not understand the power of inference
in first-order logic (FOL), and how it provides distinct capabilities relative to
simpler representations such as graphs or description logics. Part of the reason
for this lack of general familiarity may be because the barrier to entry for the field
remains high, despite many decades of work and publication. Most publications
require a degree of mathematical sophistication to understand, and even with
such capability, a reader will not know which data structures to use, or which of
the many algorithms will be simplest or best to implement.

We initially began with just an attempt for one of us (Pease) to learn about
automated Theorem Proving (ATP), motivated by decades of work in formal
ontology [6,8], and finding that among many excellent books, including [3], the
first steps to understand ATP were too difficult. Fortunately, the creator of the
prover E [13,14] (Schulz), provided the explanations needed to understand how
and where to begin. This grew into the creation of PyRes.

PyRes is a simple, resolution-based theorem prover. It implements the ba-
sic calculus from Robinson’s seminal paper [11], extended with negative lit-
eral selection and some redundancy elimination as described by Bachmair and
Ganziner [1]. The core is a given-clause based clausal saturation algorithm. The
system also supports full first-order input via clausification, and equality han-
dling via automatic addition of equality axioms.

To see whether PyRes provided enough structure to learn how to write a
theorem prover, we developed JavaRes, a prover modelled on PyRes, but written
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in Java. We also used JavaRes as a basis to show implementation of several
extensions to a baisc prover. We believe that the lessons learned in the overall
process, now incorporated into the two provers, provide a suitable platform for
ATP education.

JavaRes is open source and all code and data is available at https://github.
com/ontologyportal/JavaRes.

2 Programming Language and Software Engineering
Considerations

One lesson learned is that with code as complex as theorem proving code, un-
less there is full understanding of the algorithm and expected results, catching
problems can be very challenging. Minor coding errors can be magnified since
it is hard to know where to look in system output for problems, and system
output can be very large in a combinatorially explosive search space. Several
such issues occurred in the construction of JavaRes. In one case literals were
not initialized as to whether literal selection had considered them suitable for
inference. Copies were created of literals that included their literal selection flag,
rather than reinitializing them by default as true. This problem didn’t cause
any errors, just failure to prove certain theorems (but not others) and therefore
wasn’t obvious in simple examples and unit tests. Another problem resulted from
a typo in the subsumption code, where the variable ’subsumed’ was mistyped
as ’subsumer’. Even meaningful variable names can be a problem if they are
very similar to others. A more serious case of a variable naming issue that was
present in a test case was having variables named l1, ll and ll1 which could be
easily confused in most fonts.

We started work on JavaRes at CADE in 2011 and mostly kept the Java and
Python versions in sync, working one day a week together for a period of a year.
Then there was a gap of 8 years and a final push to bring JavaRes up to date with
PyRes, consisting of two months of half-time effort for one of us, plus occasional
coaching and some intensive debugging at the end. This experience indicates
that implementing a basic prover patterned after PyRes should be feasible, at
least in terms of the time commitment involved, as a graduate semester project
after an introductory course in logic.

The code base of JavaRes is significantly larger (measured in lines of code)
than that of PyRes.Java is more verbose than Python. Verbosity is a double-
edged sword. Short code is easier to read and to understand, as long as it is not
cryptic. On the other hand more verbose code may be more self documenting.
Efforts to teach ATP from these two systems may tell us which is better for
students.

While PyRes is intended as a fairly minimal example of an ATP system, we
use JavaRes as a springboard for implementing additional features and alterna-
tive algorithms.

As a result of these two issues, JavaRes is 19,334 total lines of code, versus
8553 lines for PyRes (including comments, docstrings, and unit tests). If we
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only count actual production code, there are 7508 lines of effective code for
JavaRes and only 3681 lines of effective code in PyRes. It is likely that after
this experience, refactoring and reimplementation could reduce this discrepancy,
which points simply to inexperience being at least partly the cause of more
verbose and less elegant code.

2.1 Clause Selection, Indexing, Heuristics, SInE and other Features

JavaRes includes all the optimization strategies in PyRes. For clause selection
it implements two methods, which can be combined. The most basic is a first-
in-first-out (FIFO) strategy that will eventually try every clause. However, this
is rarely optimal. A symbol-counting strategy picks the clause with the fewest
symbols. This is often a good strategy but in many cases it will fail because larger
clauses may never be considered. The most successful simple strategy turns out
to be a combination of the two, where the smallest symbol count is tried five
times and then FIFO is tried once. This results in a strong bias to smaller clauses
while ensuring that all clauses will eventually be tried. JavaRes also supports a
more conservative stregy of two tries with the smallest symbol for every one try
of the FIFO stack. Other combinations are possible with a small change to the
code.

JavaRes supports indexing for subsumption and resolution. Subsumption re-
moves clauses from the set of clauses to be processed (called “forward subsump-
tion”) and from the set already processed (“backwards subsumption”) thereby
decreasing the problem search space. More general clauses subsume more specific
ones.

Indexing employs records with signs and predicate symbols only, so that
potential clauses can be accepted or rejected more rapidly than attempting uni-
fication. In resolution, literals of opposite sign may resolve, as opposed to sub-
sumption in which those of the same sign potentially subsume. Resolution and
subsumption therefore have separate indexes.

JavaRes also implements PyRes’ approach to literal selection. A naive ap-
proach to resolution has to compare every literal in a resolver to every literal in
the proposed resolvant to see if they unify but have opposite signs. Optimiza-
tions other than this exhaustive approach can have an impact. We implement
five strategies: choose simply the first literal, the largest literal, the smallest
number of constants and variables, the smallest number of variables and finally,
a combined strategy that picks an equation of two variables, if present, or the
smallest number of variables or if those are equal then the largest number of
symbols. Largest literal selection is the default strategy.

For large theories, JavaRes has implemented the SInE algorithm[4] that has
proven to be the dominant approach in the LTB division of the CASC competi-
tion.

JavaRes can also parse the first order portion of SUO-KIF syntax used with
the SUMO knowledge base that is arguably a much more friendly syntax for
theory authoring, especially for complex or nested axioms, than TPTP. The



JavaRes data structures used for ATP with the different surface syntax of SUMO
are identical with TPTP.

3 Testing and Examples

It is very valuable to have many examples. When examples are implemented as
unit tests they catch bugs as well as explain how the algorithms are supposed
to work at each stage. The example provide a sense of purpose for each class,
and are as valuable as the algorithms themselves. Often, just having a clear set
of examples is sufficient to code at least some version of the algorithm needed.
Adding more tests and examples has been a key benefit of the implementation
of JavaRes, as it showed what obscure bugs might appear, or what non-obvious
errors might exist. For example, in an early version of unification, the imple-
mentation failed to consider all possible options, just returning a list of one set
of substitutions, rather than all possible substitution. This problem didn’t sur-
face in testing until much later, but was easily explained with an example and
test that should ensure that no future implementer will move forward with an
implementation while being unaware of this issue, should it arise. Java tests are
implemented in the jUnit framework. Whereas Python coders add tests at the
end of each class, in Java tests are separated into their own classes.

One of the lessons from implementing JavaRes is that one can never have
too many tests. A number of bugs, mostly from typographical errors, were not
evident in the unit tests and only appeared once tested on some of the larger
problems in the TPTP. Even smaller TPTP problems could lead to false con-
fidence, since several successful paths to a contradiction often exist and only
on problems that are challenging will the absence of a particular component of
proving, such as forward subsumption, be a critical issue.

We present the results in Table 1 for different problem classes within TPTP:
UEQ (unit problems with equality), CNE (clausal problems without equality),
CEQ (clausal problem with equality, but excluding UEQ), FNE (FOF problems
without equality) and FEQ (FOF problems with equality). Readers interested
in performance of the systems in other than their best configuration can refer
to our previous PyRes paper and we only present the systems here with their
performance including indexing, subsumption and best clause selection strategy.

As with our earlier experiments with PyRes, testing was on StarExec Miami,
a spin-off of the original StarExec project [16]. StarExec proved to be an essential
resource for scaling up testing as it is not practical to run all ˜24,000 available
tests for 300 seconds each on a laptop, or to load it so heavily with theorem
proving that no other work can be done. Even so, running an experiment of
this sort can take 24 hours of clock time, unless there is no other load on the
system. It was tempting, too early in the development process, to run the full set
of TPTP tests. After several abortive attempts, a much smaller set of problem
tests was used to create an integration test suite that was more comprehensive
that unit tests, nearly as fast, and certainly much faster than an indiscriminate
run on all available TPTP problems.



The StarExec machines were equipped with 256 GB of RAM and Intel Xeon
CPUs running at 3.20 GHz. The per-problem time-limit was set to 300 sec-
onds. TPTP 7.4 was used but only on problems also present in 7.2, to allow for
continuity with the measurements in our earlier paper on PyRes.

JavaRes begins to approach the performance of Prover9 on problems without
equality. It is markedly inferior to E and especially so on problems with equality.
Implementing the JavaRes/PyRes approach to ATP in C or C++ would likely
result in further speed improvements.

Category UEQ CNE CEQ FNE FEQ All
Class size (1193) (2383) (4442) (1771) (6305) (16094)

PyRes 113 945 499 632 725 2914
JavaRes 148 1107 644 737 1617 4253

E 2.4 813 1939 2648 1484 4054 10938
Prover9-1109a 728 1316 1678 709 2001 6432
LeanCoP 2.2 6 0 0 969 1826 2801

Table 1. JavaRes and PyRes problem correctness (E, Prover9 and leanCoP for com-
parison)

4 Conclusion and Future Work

The experience of JavaRes has shown that it is possible to use PyRes as the
basis for a new theorem prover implementation in about three person months of
work, albeit with some coaching, and for someone already familiar with TPTP,
as a user of TPTP and with FOL generally. The experience has shown us how
to improve the clarity of the code, and expand code comments and unit tests.

With an implementation in Java, it should be easier to integrate the prover
with existing tools to support special cases that apply to SUMO development,
since its existing Sigma tool set [10] and SUMOjEdit editor [9] are also written
in Java.

Acknowledgement: Thanks to Geoff Sutcliffe for his work on, and advice
about, StarExec and TPTP, which allowed us to test our work.
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14. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) Proc. of the 27th CADE, Natal, Brasil. pp. 495–507. No. 11716 in LNAI,
Springer (2019)

15. Schulz, S., Pease, A.: Teaching automated theorem proving by example: PyRes 1.2
(system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Proc. of the
10th IJCAR, Paris. LNCS, vol. 12167, pp. 158–166. Springer (2020)

16. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A Cross-Community Infrastructure
for Logic Solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Proc. of the 7th
IJCAR, Vienna. LNCS, vol. 8562, pp. 367–373. Springer (2014)

17. Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.:
External sources of axioms in automated theorem proving. In: Mertsching,
B., Hund, M., Aziz, M.Z. (eds.) KI 2009: Advances in Artificial Intelligence,
32nd Annual German Conference on AI, Paderborn, Germany, September 15-
18, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5803, pp.
281–288. Springer (2009). https://doi.org/10.1007/978-3-642-04617-9 36, https:

//doi.org/10.1007/978-3-642-04617-9_36

https://doi.org/10.1007/978-3-642-04617-9_36
https://doi.org/10.1007/978-3-642-04617-9_36
https://doi.org/10.1007/978-3-642-04617-9_36

	Learning Theorem Proving by Example - Implementing JavaRes

