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Abstract. Reasoning with embedded formulas is relevant for the
SUMO ontology but there is limited automation support so far. We
investigate whether higher-order automated theorem provers are ap-
plicable for the task. Moreover, we point to a challenge that we have
revealed as part of our experiments: modal operators in SUMO are
in conflict with Boolean extensionality. A solution is proposed.

1 EMBEDDED FORMULAS IN SUMO

The open source Suggested Upper Merged Ontology3 (SUMO) [9]
(and similarly, proprietary Cyc [13]) contains a small but significant
amount of higher-order representations. The approach taken in these
systems to address higher-order challenges has been to employ spe-
cific translation ’tricks’, possibly in combination or in addition to
some pre-processing techniques. Examples of such means are the
quoting techniques for embedded formulas as employed in SUMO
[11] and the heuristic-level modules in CYC [13]. Unfortunately,
however, these solutions are strongly limited. The effect is that many
desirable inferences are currently not supported, so that many rele-
vant queries cannot be answered.

This includes statements in which formulas are embedded as argu-
ments of terms, for example, statements that employ epistemic op-
erators such as believes or knows, temporal operators such as
holdsDuring, and further operators such as disapproves or
hasPurpose. While first-order automated theorem proving (FO-
ATP) for SUMO has strongly improved recently [12], there is still
only very limited support for reasoning with non-trivial embedded
formulas; we give an example (free variables in premises are univer-
sal and those in the query are existential):

Ex. 1 (Reasoning in temporal contexts.) What holds that holds at
all times. Mary likes Bill.4 During 2009 Sue liked whoever Mary
liked. Is there a year in which Sue has liked somebody?
A: (=> ?P (holdsDuring ?Y ?P))
B: (lk Mary Bill)
C: (holdsDuring (YearFn 2009)
(forall (?X) (=> (lk Mary ?X) (lk Sue ?X))))
Q: (holdsDuring (YearFn ?Y) (lk Sue ?X))

This example, which is a challenge for FO-ATP (note the embedded
first-order formula), is actually trivial for higher-order automated the-
orem provers (HO-ATP): the prover LEO-II [5] can solve it in 0.16
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sec. on a standard MacBook. A slight modification of Ex.1, which
LEO-II proves in 0.08 sec., is:5

Ex. 2 (Ex.1 modified; A is replaced by ’True always holds’.)
A’: (holdsDuring ?Y True)
B: (lk Mary Bill)
C: (holdsDuring (YearFn 2009)
(forall (?X) (=> (lk Mary ?X) (lk Sue ?X))))
Q: (holdsDuring (YearFn ?Y) (lk Sue ?X))

Further examples are studied in [6]; there we also outline the transla-
tion from SUMO’s SUO-KIF representation language [10, 7] as used
above to the new higher-order TPTP THF syntax [14] as supported
by several HO-ATPs including LEO-II.

2 THE PROBLEM WITH MODAL OPERATORS

Validity of Ex.1 and Ex.2 is easily shown provided that Boolean ex-
tensionality6 is assumed (this ensures that the denotation of each for-
mula, also the embedded ones, is either true of false). This assump-
tion has actually never been questioned for SUMO, neither in [7] nor
in [10].

However, this assumption also leads to problematic effects as the
following slight modification of Ex.2 illustrates:

Ex. 3 (Ex.2 modified; now formulated for an epistimec context)
A”: (knows ?Y True)
B: (lk Mary Bill)
C’: (knows Chris
(forall (?X) (=> (lk Mary ?X) (lk Sue ?X)))
Q’: (knows Chris (lk Sue Bill))

Using Boolean extensionality the query is easily shown valid and
LEO-II can prove it in 0.04 sec. However, now this inference is dis-
turbing since we have not explicitly required that (knows Chris (lk
Mary Bill)) holds which intuitively seems mandatory. Hence, we here
(re-)discover an issue that some logicians possibly claim as widely
known: modalities have to be treated with great care in classical, ex-
tensional higher-order logic. Our ongoing work therefore studies how
we can suitably adapt the modeling of affected modalities in SUMO
in order to appropriately address this issue. A respective proposal is
sketched next.

5 It is important to note that True in A’ can actually be replaced by other
tautologies, e.g. by (equal Mary Mary); this may appear more natural
and the example can still be proved by LEO-II in milliseconds.

6 For a detailed discussion of functional and Boolean extensionality in clas-
sical higher-order logic we refer to [2].



3 REASONING WITH MODALITIES IN SUMO
The solution we currently explore is to treat SUMO reasoning prob-
lems hat involve modal operators as problems in quantified multi-
modal logics. Unfortunately there are only very few direct theorem
provers for quantified multimodal logics available. We therefore ex-
ploit our recent embedding of quantified multimodal logics in clas-
sical higher-order logic [4, 3] and we investigate whether this em-
bedding can fruitfully support the automation of modal operators in
SUMO with off-the-shelf HO-ATPs (cf. [1] for first studies).

The idea of the embedding is simple: modal formulas are lifted to
predicates over possible worlds, i.e. HO-terms of type ι � o, where
ι is a reserved base type denoting the set of possible worlds. For
individuals we reserve a second base type µ.7

Modal operators such as >, ⊥, ¬ , ∨ , ⊃ , 2 , and
∀ind, ∀prop are then simply defined as abbreviations of
proper HO-terms, e.g. ¬ = λφι�o λWι ¬φ W and 2 =
λRι�ι�o λφι�o λWι ∀Vι ¬R W V ∨ φ V . In the following we
write 2r for the application of 2 to an accessibility relation r of
type ι � ι � o.8

Exploiting this embedding we can now suitably map SUMO
problems containing modal operators: e.g. C’ in Ex. 3 is lifted to
(2Chris ∀indXµ ((lk Mary X) ⊃ (lk Sue X)))ι�o and B sim-
ply becomes (lk Mary Bill)ι�o. Since 2 is here associated with
knowledge we axiomatize it as an S4 or S5 modality below. Simi-
larly, we could introduce further copies of 2, e.g. for believes, and
provide different axioms for it.

The final step is to ground the lifted terms. For
this, T-Box like information in SUMO, such as the ax-
iom (instance instance BinaryPredicate), is inter-
preted as universally quantified over all possible worlds:
∀Wι ((instance instance BinaryPredicate) W ). A-Box
like information and queries in contrast are modeled with respect
to a current world cw (of type ι). Since our examples only contain
local premises and queries, i.e. A-Box like information, Ex.3 is thus
translated as:

Ex. 4 (Translated Ex.3)
A”: ∀Yι�ι�o ((2Y >) cw)
B: ((lk Mary Bill) cw)
C’: ((2Chris (∀indXµ ((lk Mary X) ⊃ (lk Sue X)))) cw)
Q’: ((2Chris (lk Sue Bill)) cw)

The axioms for S4 (T+4) or S5 (T+5) can be added as follows:
T: ∀Wι ((∀propφι�o 2Chris φ ⊃ φ) W )
4: ∀Wι ((∀propφι�o 2Chris φ ⊃ 2Chris 2Chris φ) W )
5: ∀Wι ((∀propφι�o 3Chris φ ⊃ 2Chris 3Chris φ) W )

The above example is not valid, which we wanted to achieve, and
LEO-II correctly fails to prove it (timeout). However, if we move
premise B in the context of Chris’ knowledge then we get:

Ex. 5 (Modified Ex.4)
A”: ∀Yι�ι�o ((2Y >) cw)
B’: ((2Chris (lk Mary Bill)) cw)
C’: ((2Chris (∀indXµ ((lk Mary X) ⊃ (lk Sue X)))) cw)
Q’: ((2Chris (lk Sue Bill)) cw)

Ex.5 is valid and it is proved by LEO-II in less than 0.15 sec.
7 In [4] we use µ for possible worlds and ι for individuals; this syntactic

switch is completely unproplematic.
8 Note the elegant way in which indexation over different accessibility rela-

tions is facilitated via λ-abstraction in the definition of 2 ; this is the basis
for combining different 2k operators in our framework; cf. [1].

4 CONCLUSION
Reasoning with embedded formulas is naturally supported in exten-
sional HO-ATPs. However, this leads to a problem regarding the ad-
equate treatment of modal operators. A potential solution has been
outlined in this paper that we are currently investigating further. Our
ongoing work in particular studies the scalability of HO-ATPs for
the task. Due to the recent, strong improvements of HO-ATPs [14] –
which will be further fostered by the new higher-order CASC compe-
titions – we are quite optimistic though. The large theories challenge
obviously requires the development or adaptation of strong relevance
filters, such as SInE [8], to our higher-order logic setting.

We have to admit that we currently see few alternatives to
HO-ATP for the automation of ontology reasoning problems
with embedded formulas and modalities as presented in this paper
and already our toy examples seem challenging for other approaches.
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